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We describe the use of Bayesian regularized artificial neural networks (BRANNs) in the
development of QSAR models. These networks have the potential to solve a number of problems
which arise in QSAR modeling such as: choice of model; robustness of model; choice of validation
set; size of validation effort; and optimization of network architecture. The application of the
methods to QSAR of compounds active at the benzodiazepine and muscarinic receptors is
illustrated.

Introduction

Quantitative structure-activity relationship (QSAR)
methods were developed by Hansch and Fujita,1 and
they have been successfully applied to many drug and
agrochemical design and optimization problems. As well
as speed and simplicity, QSAR has advantages of being
capable of accounting for some transport and metabolic
processes which occur once the compound is adminis-
tered. Hence, the method is often applicable to the
analysis of in vivo data. As useful as ‘traditional’ QSAR
methods have been, they still exhibit a number of
difficulties and shortcomings which relate to the mo-
lecular representations used and the methods by which
SAR models are developed and validated.

Finding SARs is essentially a regression or pattern
recognition process. Historically, linear regression meth-
ods such as MLR (multiple linear regression) and PLS
(partial least squares) have been used to develop QSAR
models. Regression is an “ill-posed” problem in statistics,
which sometimes results in QSAR models exhibiting
instability when trained with noisy data. In addition
traditional regression techniques often require subjec-
tive decisions to be made on the part of the investigator
as to the likely functional (e.g. nonlinear) relationships
between structure and activity. It is important that
QSAR methods be quick, give unambiguous models, not
rely on any subjective decisions about the functional
relationships between structure and activity, and be
easy to validate. Recently, regression methods based on
neural networks have been shown to overcome some of
these problems as they can account for nonlinear SARs
and can deal with linear dependencies which sometimes
appear in real SAR problems. Neural network training
can be regularized, a mathematical process which
converts the regression into a well-behaved, “well-posed”
problem. The mathematics of ‘well-posedness’ and regu-

larization can be found in the papers by Hadamard and
Tikhonov.2 Feed-forward, back-propagation neural nets
still present some problems, principal of which are
overtraining, overfitting, network architecture optimi-
zation, and selection of the best QSAR model. Over-
training results from running the neural network
training for too long and results in a loss of ability of
the trained net to generalize. Overtraining can be
avoided by used of a validation set. However, the effort
to cross-validate QSAR models scales as O(N2P2)3, where
N is the number of data points and P is the number of
input parameters. Where the training data set is large
and diverse, as may occur in combinatorial discovery,
this can result in prohibitively large validation times.
Validation procedures also produce a family of similar
QSAR models, and it is not clear which of these models
is preferred or how they may be combined to give the
‘best’ model. It is also not obvious which neural net
architecture (e.g. number of hidden layers; number of
nodes per hidden layer; fully connected or not) gives the
best QSAR model necessitating an additional architec-
ture optimization step. Overfitting results from the use
of too many adjustable parameters to fit the training
data and is avoided by use of test sets of data, not used
in the training and validation steps.

The primary purpose of this paper is to show how to
produce a robust QSAR model using a special type of
neural network, a Bayesian regularized artificial neural
network (BRANN). These types of neural networks have
found applicability in numerous other areas of data
modeling but, with a very recent exception,4 have not
been used for QSAR analysis. BRANNs offer substantial
advantages in QSAR analysis compared with other
methods such as conventional back-propagation neural
networks and regression techniques.

Methods
Molecular Indices. We employed a combination of three

easily computed molecular indices in this work: the well-* To receive all correspondence.
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studied Randic5 index (R); the valence modification to the
Randic index by Kier and Hall (K);6 an atomistic (A)7 index
developed by Burden. The R and K indices are produced from
the path length and valence electron counts in the molecule.
The atomistic index (A) counts the numbers of each type of
atom present in the molecule.

The three types of indices, R, K, and A, are complementary,
and we have shown in previous studies8 that their combination
yields better QSAR models than the individual indices.
Principal component analysis (PCA) is used to reduce redun-
dant information and minimize overfitting. When PCA (a
linear transformation) is used prior to a nonlinear regression,
the usual criterion of ignoring those components with small
variance is inappropriate. The number of principal components
that gives the lowest standard error of prediction is the proper
measure, and the use of a test set allows selection of models
with best predictivity.

BRANNs. The Bayesian method is summarized in the
papers by Mackay9 and Buntine and Weigend,10 and only a
brief summary will be provided here. Bayesian methods are
optimal methods for solving learning problems. Any other
method not approximating them should not perform as well
on average.10 They are very useful for comparison of data
models (something orthodox statistics cannot do well) as they
automatically and quantitatively embody “Occam’s Razor”.
Complex models are automatically self-penalizing under Bayes’
Rule.9 Bayesian methods are complementary to neural net-
works as they overcome the tendency of an overflexible
network to discover nonexistent, or overly complex, data
models.

Unlike a standard back-propagation neural network train-
ing method where a single set of parameters (weights, biases,
etc.) are used, the Bayesian approach to neural network
modeling considers all possible values of network parameters
weighted by the probability of each set of weights. Bayesian
inference is used to determine the posterior probability
distribution of weights and related properties from a prior
probability distribution according to updates provided by the
training set D using the BRANN model, Hi. Where orthodox
statistics provide several models with several different criteria
for deciding which model is best, Bayesian statistics only offer
one answer to a well-posed problem.

Bayesian methods can simultaneously optimize the regu-
larization constants in neural nets, a process which is very
laborious using cross-validation. There is no better method for
reliably finding and identifying better models using only the
training set.9

Characteristics of the Neural Network. We used the
Bayesian regularized neural network package in the MAT-
LAB11 Neural Network Toolbox for the work described made
here. This module is incorporated in a comprehensive chemo-
metrics package written in MATLAB language by one of the
authors (F. R. Burden). Our Bayesian neural networks were
three-layer fully connected feed-forward networks with a
variable number of neurodes in the hidden layer, each neurode
in the middle and output layer using a sigmoidal transfer
function. The basic method used in the network training is
derived from the Levenberg-Marquardt algorithm,12 and the
MATLAB implementation of the algorithm uses an automatic
adjustment of the learning rate and the Marquardt µ param-
eter. The Bayesian regularization takes place within the
Levenberg-Marquardt algorithm and uses back-propagation
to minimize the linear combination of squared errors and
weights. The training is stopped if: the maximum number of
epochs is reached; the performance has been minimized to a
suitable small goal; the performance gradient falls below a
suitably target; the Marquardt µ parameter exceeds a suitable
maximum. Each of these targets and goals were set at the
default values set by the MATLAB implementation. The

training was carried out many times and the final model
chosen with reference to the test set to assess robustness.

Small Benzodiazepine Data Set. This was a set of 57 1,4-
benzodiazepin-2-ones used in a study by Maddelena and
Johnston.13 Benzodiazepines have been used therapeutically
as anxiolytics, as tranquilizers, and as anticonvulsants in
epilepsy. They act via the benzodiazepine site (BzR) on the
γ-aminobutyric acid receptor (GABAA) family and have been
subject to extensive research, with over 20 QSAR studies
having been carried out (e.g. ref 14). The IC50 values reported
represent the concentration of compound causing 50% inhibi-
tion of binding of [3H]diazepam at the BzR. The set was
reduced from 57 to 55 compounds to remove those with a single
atomistic entry and hence be untrainable. The activities of the
compounds in Maddelena and Johnston’s data set have been
very carefully measured15 with errors estimated at less than
10% at the 95% confidence level. A test set of 11 (20% of data
set) was used.

Large Benzodiazepine Data Set. This is a set of 245
compounds that act on the BzR and was culled from the
literature.16-23. They do not have a common substructure so
that the nature of the molecular indices used in forming the
model becomes more important. The data, which falls into
several subsets, is likely to be less accurate than those in the
smaller data set. The larger size of the set also means that
the test set of 50 compounds will be more representative of
the set as a whole. A test set of 20% of the compounds was
used.

Muscarinic Data Set. This is a set of 162 compounds that
act on the M1 muscarinic receptor and was culled from the
literature.24,-29 Muscarinic compounds are used in the treat-
ment of memory-related problems such as Alzheimer’s disease.
The compounds in this data set do not have a common
substructure but do fall into small subsets with common
structures. IC50 values were measured as the concentration
necessary to displace 50% of [3H]quinuclidinyl benzilate (QNB)
from the M1 muscarinic receptor. A test set of 20% of the
compounds was used.

Procedure Used in Forming the Model. For each data
set the following steps were taken. The data set was divided
into a training set and a test set chosen by a K-means
clustering algorithm clustering on X|Y values. Clustering on
X|Y generally gives slightly poorer training statistics than Y
clustering, but superior predictive statistics. Clustering on X|Y
data is our preferred method in that it clusters the compounds
according to all of the given information in a manner akin to
PLS. This may lead to different test sets for different groups
of indices but is appropriate when searching for the best model
of a data set.

The training set data was mean-centered, and this mean
was subtracted from the test set data. Several training sessions
were carried out with different neural net architectures using
different numbers of principal components (PCs) derived from
the X data. Since the modeling procedure using neural
networks is nonlinear, the number of PCs used was deter-
mined by the standard error of prediction of the test set rather
than by the minimum variance described by the PCs. The
number of effective parameters NPar can be calculated by the
BRANN. With optimal number of PCs and architecture, the
BRANN was trained independently 30 times to eliminate
spurious effects caused by the random set of initial weights,
and the one that gave the lowest standard error of prediction,
SEP, is the one reported.

We also compared the models produced by BRANNs with
those generated by PLS. We used the same descriptors as
BRANNs with the PLS Toolbox developed by Wise.30

Network Architecture. To test whether the QSAR models
were essentially independent of network architecture beyond
a minimum, we developed QSAR models for the small Bz data
set using the Bayesian neural net in which the number of
nodes comprising the hidden layers was varied between 1 and
6. Bayesian neural nets used to generate QSAR models for
the two large data sets employed one hidden layer with four
neurodes.

P(w|D,Hi) )
P(D|w,Hi)P(w|Hi)

P(D|Hi)
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Results and Discussion
Robustness of the Models. All 30 training sessions

gave results that were very similar to the one reported
in Tables 1-3. This contrasts with the common experi-
ence with neural networks used in QSAR studies where
the use of initial randomized weights often leads to
different models, with different weights, though often
leading to similar SEPs. The use of BRANNs overcomes
this shortcoming where models giving similar SEPs
have similar weights.

Independence of Network Architecture. QSAR
models with differing numbers of nodes within the
hidden layer are illustrated in Table 2 for the R,K,A
indices and the muscarinic data set. It is clear that the
training and test set statistics converge to a constant
set for neural networks containing a hidden layer with
more than four nodes. The number of effective param-
eters also converges when the number of hidden layer
nodes is increased beyond a minimum value as Table 2
shows. The number of effective parameters increases
from 14 when there is 1 node and settles at near 37
when the number of nodes is 4 or greater. This allows
the use of four nodes with some confidence knowing that
the BRANN will have produced a set of weights with
good generalization properties.

A ‘rule of thumb’ has been reported by those employ-
ing neural networks for QSAR to allow network archi-
tectures to be defined approximately. It has been
accepted that the ratio, F, of the number of input
samples to the number of weights31 should be greater

than 2.0, though cross-validation allows for the use of
smaller values.

Performance of Test Set. Tables 1-3 show that in
most cases the test set statistics of the standard error
of prediction and corresponding squared correlation
coefficient (SEP and Q2) were inferior to the correspond-
ing values of the training set (SEE and R2). There is
one case where the Q2 is slightly larger than R2, which
is possible with some choices of test set.

Table 1 compares the QSAR models for the small Bz
data derived using BRANNS with a PLS analysis using
the same R,K,A indices and results from previous QSAR
studies of this data set. The BRANN models are clearly
superior to the PLS models, suggesting that significant
nonlinearity exists in the SAR model which PLS is not
addressing. Comparison of BRANN models with other
QSAR models for this data set is problematic. Many
QSAR studies rely on leave-one-out (LOO) or similar
cross-validation methods for estimating the predictivity
of the model. We have adopted a more stringent
measure of predictivity in using a test test which is
never involved in training the model, unlike cross-
validation. It is therefore not correct to compare statis-
tics from LOO validation sets with those from test sets.
This is why we distinguish between training (R2, SEE),
validation (R2

cv, SEV), and test (Q2, SEP) statistics in
Table 1. The results show that the care taken in the
present method leads to a very good model with a SEP
value of 0.14 and a Q2 of 082. Previous studies by
Maddalena and Johnston13 used physicochemical pa-
rameters rather than the structural indices used here,
further confounding comparisons of models. Maddalena
and Johnston’s method is not sufficiently general for the
analysis of large SAR data sets or screening of large
data sets where there is no common substructure.
Similar arguments apply to So and Karplus’ neural
network analysis of this data set.32

Table 3 compares the QSAR models for the large Bz
data set and the muscarinic data set derived using
BRANNs with a PLS analysis using the same R,K,A
indices. The overall statistics for the larger Bz data set
model are not as good as those for the small benzodi-
azepine data set. As this smaller set has a common

Table 1. 55-Benzodiazepine Data Set with a Common Substructurea

method
(descriptors) NI

no. of
PCs or LVs

training
SEE, R2

validation
SEV, R2

cv

test
SEP, Q2 NPar Feff

BRANN (R,K,A) 21 12 0.076, 0.91 nab 0.14, 0.82 25 1.8
PLS (R,K,A) 21 5 0.146, 0.69 na 0.183, 0.50 21 na
previous paper

(atomistic)
11 11 na 0.12, 0.91 na na 0.70c

Maddalena &
Johnston
(substituent)

10 10 na 0.12, 0.88 na na na

So & Karplus
(substituent)

10 10 na na, 0.94 na na na

a Clustering on X|Y data and unshuffled. Data scaled 0 to 1. b na, not available/not applicable. c Four hidden modes.

Table 2. Variation of the Effective Number of Parameters and
Model Quality with the Number of Hidden Neurodes for the
Muscarinic Data Set and the R,K,A Indicesa

hidden
nodes SEE R2 SEP Q2 NWeight NPar Feff

1 0.14 0.38 0.16 0.40 17 14 9.3
2 0.12 0.57 0.13 0.57 33 25 5.2
3 0.12 0.63 0.12 0.64 49 32 4.1
4 0.11 0.65 0.13 0.59 65 36 3.6
5 0.11 0.67 0.13 0.58 81 37 3.5
6 0.11 0.66 0.14 0.54 97 38 3.4

a Using four hidden nodes. 162 in training set, 30 in test set.
Data scaled 0 to 1.

Table 3. Benzodiazepine and Muscarinic Data Sets without a Common Substructure Using the R,K,A Indicesa

data set N NI method
no. of

PCs or LVs SEE R2 SEP Q2 NPar Feff

benzodiazepine 245 25 BRANNs 14 0.14 0.63 0.14 0.69 50 4.1
245 25 PLS 13 0.20 0.38 0.21 0.28 25 nab

muscarinic 162 22 BRANNs 14 0.10 0.69 0.12 0.63 41 3.2
162 22 PLS 17 0.14 0.44 0.17 0.21 22 na

a Data scaled 0 to 1. b na, not available/not applicable.
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structural motif, it is likely the quality of the models is
a reflection of the suitability of the molecular indices to
cope with molecular diversity and the quality of the
measured biological response data (the large data sets
were an amalgam of values measured by several labo-
ratories at different times). The results for both large
data sets show that the R,K,A indices give a good
predictive Q2 and SEP compared with the PLS analysis
of these data also shown for comparison, again suggest-
ing nonlinearity in the SAR model. We suggest that the
R,K,A set of indices, which are simple to calculate, are
likely to produce a useful model for the screening of very
large virtual data sets.

Conclusions

The advantages of Bayesian methods are that they
produce models that are robust, are well-matched to the
data, and make optimal predictions. Multiple training
of a given data set/index/architecture combination re-
sults in models which are very similar, suggesting that
the method is robust. No test or validation sets are
strictly necessary so that, in principle, all available
training data can be devoted to the model and the
potentially lengthy validation process discussed above
is avoided.9 The Bayesian objective function is not noisy,
in contrast to the cross-validation measure. Although
there is no need for a test set, since the application of
the Bayesian statistics provides a network that has
maximum generalization,9 it is still considered prudent
to use a test set. The Bayesian neural net has the
potential to give models which are relatively indepen-
dent of neural network architecture, above a minimum,
at least for the cases reported here, and the Bayesian
regularization method estimates the number of effective
parameters. The number of effective parameters used
in the model is less than the number of weights, as some
weights do not contribute to the models. This minimizes
the likelihood of overfitting. The concerns about over-
fitting and overtraining are also removed by this method
so that the production of a definitive and reproducible
model is attained.

The results indicate that BRANNs possess several
properties useful for the analysis of structure-activity
data. Our studies on the application of BRANN to the
development of QSAR models suggest that the method
has the potential to become a universal robust method
applicable to a wide range of problems, and we feel that
the method merits consideration by others developing
QSAR models in the drug and agrochemical research
areas.

We are now investigating using the automatic rel-
evance detection (ARD) for input variables method to
eliminate the need for PCA variable reduction prior to
training the BRANN. This technique, reviewed by
Mackay,9 allows all input parameters to be used in the
neural net, with Bayesian inference eliminating those
which contain no or redundant information. Successful
application of ARD will further simplify, and increase
the robustness of, QSAR models developed by BRANN.

Our research focus is also on developing information-
rich, computationally cheap molecular descriptors and
robust SAR mapping methods for use in QSAR, data-
base mining, and simulation of combinatorial discovery.
We are using BRANN methods to carry out virtual

screening and identification of novel lead structures in
chemical space in conjunction with novel molecular
descriptors to be described in further publications.
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